
UNLIMITED DISTRIBUTION

I National Defence Defense nationale
Research and Bureau de recherche
Development Branch et developpement

TECHNICAL COMMUNICATION 89/307
July 1989

IBM PC ANALYSIS

OF
POLARIZATION RESISTANCE DATA

A. E. Hardy - C. M. Hanham

DTIC

Dimtbution Uchmiited

Defence Centre de
Research . Recherches pour la
Establishment Defense
Atlantic Atlantique

Canada
89 9 13 112

UNLIMITED DISTRIBUTION

I * National Defence Defense nationale
Research and Bureau de recherche
Development Branch et developpement

IBM PC ANALYSIS
OF

POLARIZATION RESISTANCE DATA

A. E. Hardy - C. M. Hanham

July 1989

Approved by R.S. Hollingshead Distribution Approved by
F/Dockyard Laboratory Section

TECHNICAL COMMUNICATION 89/307

Defence Centre de
Research Recherches pour la
Establishment Dfense
Atlantic Atlantique

Canad

ABSTRACT

An IBM PC has been set up to control an EG&G PARC M273
potentiostat to perform electrochemical corrosion experiments
using PARC's M342 corrosion measurement software.
Modifications to the software permit the measurement of
corrosion current over long periods of time usina the
Polarization Resistance measurement technique. A computer
program, PCCORROS, is used to analyze the polarization
resistance data to determine the polarization resistance,
corrosion current, anodic and cathodic tafel constants, and
the corrosion potential.

RE SUME

Un IBM PC a 6t6 configur6 de mani(re qu'il puisse
commander un potentiostat EG&G PARC M273 en vue de la
r6alisation d'exp~riences sur la corrosion 6lectrochimique au
moyen du logiciel de mesure de la corrosion PARC M342. Le
logiciel a 6t6 modifi@ de mani~re A permettre la mesure du
courant de corrosion pendant de longs intervalles par la
m~thode de mesure de la r6sistance de polarisation. On
utilise le logiciel PCCORROS pour analyser les donn~es de
r6sistance de polarisation afin de determiner la resistance
de polarisation, le courant de corrosion, les constantes de
afel anodique et cathodique, ainsi que le potentiel de
corrosion.

iii

TABLE OF CONTENTS

Page

ABSTRACT ii

1. INTRODUCTION 1

2. ..- PC BASED CC0-ROSION MEASUREMENT SYSTtEM 2

3. PCCORROS 4

4. CONCLUSION 6

TABLES 7

FIGURES 8

APPENDIX

A M342.BAT: BATCH FILE THAT RUNS THE M342 SOFTWARE 10

B MODIFICATIONS MADE TO S-F.BAS 11

C PCCORROS.BAT: BATCH FILE THAT RUNS PCCORROS 13

D DATA.EXE: READS THE M342 DATA DISKS FOR PCCORROS 14

E PCCOR.EXE: MAIN PROGRAM USED BY PCCORROS 16

F PCCORSUB.TPU: TURBOPASCAL UNIT USED BY PCCOR.EXE 33

G SIMPLIFIED PCCORROS RUN 41

H DATA FILE FE551.DAT 43

I PRINTOUT OF A PCCORROS RESULTS FILE 45

J INSTALL.BAT: BATCH FILE THAT INSTALLS PCCORROS 48

REFERENCES Acce.-o, For 49
N4TIS CRA,&I
[)TIC TAB 0]
JtiannooCed 0

By
Distribution I

Availabblty Codes

A al a',d Ior
Dist Sp .di

iii /:A -1

1. INTRODUCTION

The corrosion properties of a metal can be determined by
direct methods, such as weight loss measurement and corrosion
pit depth measurement, or indirectly by electrochemical
techniques. Electrochemical techniques are an important tool
in determining the corrosion susceptibility of metals. They
utilize a potentiostat or galvanostat to apply a current or
voltage to a sample and measure the resulting current or
voltage. These methods provide rapid quantitative and
qualitative results which can be used to study corrosion
under environmental conditions that can be easily controlled
in a lab.

DREA Dockyard Laboratory has used two computer
controlled corrosion measurement systems from EG&G, Princeton
Applied Research Corporation (PARC). The Model 350 (M350)
Corrosion Measurement System consists of a central processing
unit, a potentiostat and a plotter integrated into a single
unit. The Model 351 (M351) is composed of two separate
units; a Model 1000 System Processor and a Model 273 (M273)
Potentiostat/Galvanostat. It also has a Houston Instrument's
HIPLOT DMP-40 plotter for presenting results.

Polarization Resistance measurements are used at DREA to
determine the variation of corrosion current with time. They
have traditionally been carried out at DREA by using the
experiment rerun option on the M350 corrosion measurement
system. The data was stored on the DREA DEC20 computer and
analyzed using a program called CORROS1 . It was desirable to
perform this same task using the M273 potentiostat in order
to carry out simultaneous experiments. Since the M351's
software does not provide a rerun option and cannot be
modified, it was necessary to purchase a microcomputer to
control the M273 potentiostat. An IBM PS/2 Model 50Z
personal computer (IBM PC) was obtained along with a National
Instruments General Purpose Interface Bus (GPIB) to connect
the microcomputer to the M273 potentiostat.

The Model 342 (M342) SOFTCORR Corrosion Measurement
Software was obtained from EG&G PARC to be used with the IBM
PC to communicate with the M273 potentiostat. The software
was written in IBM Advanced BASIC (BASICA) and was modified
to perform polarization resistance measurements over long
periods of time. CORROS1 was modified to run on the IBM PC.
This modified program is called PCCORROS.

1

2. IBM PC BASED CORROSION MEASUREMENT SYSTEM

The GPIB was installed in the IBM PC2 ,3 The IBM PC's
back-up Reference Disk was updated to include the GPIB in its
system configuration. The M342 software was installed on the
IBM PC's hard disk. Installation instructions are located on
the M342 source disk in the file, README.342.

The M342 software performs the nine standard
electrochemical corrosion experiments listed below.

1. Potentiodynamic Polarization
2. Polarization Resistance
3. Potentiokinetic Reactivation
4. Cyclic Polarization
5. Tafel Plot
6. Ecorr vs Time
7. Galvanostatic
8. Potentiostatic
9. Galvanic Corrosion

The M342 software's operating manual 4 explains how to use the
software to perform the above experiments.

The M342 software is run by a batch file 5 , M342.BAT
(Appendix A), which can be executed by typing M342 at the
Disk Operating System's5 (DOS) prompt and pressing the
"ENTER" button. A formatted disk, inserted in drive B, is
used to store the experimental results and data files (.T and
.D files respectively). The DOS command, CHKDSK5 , can be
used before an experiment is run to ensure that the disk has
sufficient memory to store these files. The memory required
depends on the experiment performed and the parameters used.
A typical polarization resistance experiment requires 500
bytes of storage space for the results and data files. If a
polarization resistance experiment was run once every hour
for 200 hours, 100 kbytes of storage space would be required.

Modifications made to S-F.BAS of the M342 software
package are listed in Appendix B. They enable experiments to
be run over a long period of time by performing subsequent
runs of the same experiment. The M342 software limits the
experiment name to seven characters4 " The run number is
appended to the experiment name, limiting its length by the
number of digits in the run number. For example, run number
123 of experiment FE55 would be saved as experiment FE55123.
The data is saved at the end of each run to ensure that it is
not lost if the program is inadvertently halted before all
the runs are completed.

2

Before an experiment can be run, the following five

questions must be answered.

1. DO YOU WISH TO DO RERUNS (Y=YES; N=NO)?

The next four questions will not appear and a
single experiment will run if you press N and the
"ENTER" button.

To perform an experiment over a long period of time
press Y.

2. HOW MANY RUNS DO YOU WANT?

This is the total number of runs that will be done
before the program ends. For example, to do 200
Polarization Resistance experiments on a sample, enter
200.

3. HOW LONG BETWEEN THE START OF EACH RUN (MIN)?

This is the length of time, in minutes, from the
start of one run to the start of the next run. Enter
the desired number of minutes and press the "ENTER"
button.

4. AT WHAT NUMBER WOULD YOU LIKE TO BEGIN?

This is the number at which the runs begin to be
numbered. If 65 is entered the runs will be numbered
65, 66, 67, ... until the desired number of runs ha.
been performed.

5. CONTINUE (Y=YES)?

Enter Y to run the experiment. Enter N to change
the answers to any of the above questions. The program
will start over at question 1.

The computer display between runs is shown in Figure 1.
Pressing S advances the program immediately to the next run.
Pressing D exits the program to BASICA's DOS shell. All DOS
commands, including executing .EXE, .BAT and .COM files, are
permitted. BASICA cannot be used from the shell. Typing
EXIT and pressing the "ENTER" button exits the shell and
returns you to the program. The current directory MUST be
the PARC subdirectory before exiting the shell or the M342
software will not work properly.

The modifications to the original M342 software can be
made, using BASICA, by following the six steps listed below.

3

The software must be installed, according to the instructions
supplied with it, before the modifications can be made.

I. At the DOS prompt type CD\PARC and press "ENTER".
2. Type BASICA and press "ENTER".
3. Type LOAD "S-F.BAS" and press "ENTER".
4. Type in the modifications listed in Appendix B.
5. Type SAVE "S-F.BAS" and press "ENTER".
6. Type SYSTEM and press "ENTER".

The software is now ready to run following the instructions
for the original version.

If an experiment that is not part of the M342 software
package is needed, it can be created from scratch using HEAD
START , a software package distributed by EG&G PARC. The
M342 software lacks the high quality plots available with the
previously used systems. Various plotting packages are
available that can take the raw data from any M342 corrosion
experiment and make high quality plots. A new, compiled
version of the M342 software, which includes an improved
plotting utility, is now available from EG&G PARC.
Unfortunately the compiled version cannot be modified to
perform reruns.

3. PCCORROS

CORROS1 is written in PASCAL with several subroutines
7

in FORTRAN. It was converted to TurboPASCAL 4.0 in order to
run on an IBM PC. The modified version, called PCCORROS,
will only run on a computer with a math coprocessor
installed. PCCORROS consists of four files, PCCORROS.BAT,
DATA.EXE, PCCOR.EXE, and PCCORSUB.TPU.

PCCORROS is run by the batch file PCCORROS.BAT (Appendix
C). The data files created by the M342 software are read by
the program DATA.EXE (Appendix D), which is written in
Microsoft QuickBASIC. It reads the compressed data file from
a data disk in drive B and converts it into ASCII (human
readable) form. The data, in ASCII form, is stored in the
file HOLD.ASC on a disk in drive A. HOLD.ASC is read by
PCCOR.EXE (Appendix E), the main program of PCCORROS.
PCCOR.EXE performs the analysis of the data until there is
"No Further Improvement Available", according to the
conditions set up in the original CORROS 1 program, or until
25 iterations have been performed. After 25 iterations, the
program will pause and ask the user if he wishes to continue.
An answer of 1, for yes, will cause the program to continue

4

running for a maximum of 25 more iterations. Any other
answer will cause the program to save the results and
terminate the program. PCCORSUB.TPU (Appendix F) is a
TurboPASCAL unit used by PCCOR.EXE to perform the tasks of
the FORTRAN subroutines of CORROS1 . Extended real
variables8 , with 19 significant digits, were used to ensure
the accuracy of the calculations. The results of the
analysis are saved in a user specified file with the
extension .RES on a disk in drive A. If the file does not
exist, a new file is created. Otherwise, the results are
appended to the existing file. The raw data is saved on
drive A in a file with the same name as the original data
file, but with the extension .DAT. Points on the curve that
PCCOR.EXE fits to the raw data is stored on drive A in a file
with the same name but with the extension .FIT. These files
can be printed out to compare the actual data to the fitted
curve used by PCCORROS. Figure 2 shows the raw data and the
fitted curve on a plot created by ENPLOT9 .

PCCORROS is run by typing PCCORROS at the DOS prompt and
pressing the "ENTER" button. An example run of PCCORROS is
given in Appendix G. The data analyzed is listed in Appendix
H. The results can be printed out by typing in the following
line at the DOS prompt.

TYPE A:\filename.RES>PRN

Where filename is the name of the PCCORROS results file to be
printed out. An example printout is given in Appendix I.

PCCORROS was used to analyze data from a Tafel plot
expe.iment1 0 . Table ' shows the results of the analysis
along with the results from CORROS1 and the original Tafel
plot analysis performed on the same data. The results from
PCCORROS and CORROS are both significantly close to the Tafel
plot analysis.

A distribution copy of PCCOPROS, including its source
code, has been made. The program can be installed in an IBM
compatible microcomputer that has a math coprocessor. To
install PCCORROS, insert the floppy disk into a drive, type
d: (where d is the drive letter) and press the "ENTER"
button. Type INSTALL and press "ENTER". The batch file
INSTALL.BAT (Appendix J) installs PCCORROS on disk drive C.
The files are copied into a subdirectory, PCCORROS, created
by INSTALL.BAT. The batch file PCCORROS.BAT is copied to the
root directory. PCCORROS is ready to run from the root
directory of drive C.

5

4. CONCLUSION

The system has been set up for ease of use. All of the
corrosion experiments and data analyses can be performed from
the root directory. The M342 corrosion measurement software
has been modified to perform reruns of polarization
resistance experiments. This software is difficult to modify
due to its complexity and !ack of documentation. PCCORROS is
easy to run and explains each step to the user as it performs
the analyses of polarization resistance data. It can easily
be modified, using the source code and the proper compiler,
to best suit individual corrosion systems.

6

Table 1 Resufs from CORROS I , PCCORROS, and original Tafel
Plot analysis of a Tafel Plot experiment.

Ecorr ba bc Rp Icorr
(mV) (mV) (mV) (kohms) (mA/cm-2)

Tafel Plot 200 40 120 --- 1.0

CORROS 200 40.57±0.71 126.70±13.15 0.01±0.0 1.07±0.03

PCCORROS 200l 40.57±0.71 126.70±13.15 0.01±0.0 1.07±0.03

7

12 :59: 12
Run 12 will begin in 12 : 16 MIN
Total number of runs: 100
Press 'S' to advance to next run.
Press 'D' to go to DOS shell. Type EXIT to exit
the DOS shell. NOTE: You MUST be in the PARC
subdirectory before exiting the DOS shell.

Figure 1 Modified M342 corrosion software's display screen
between runs.

8

6.0

3.6 - ' DATA

CURRENT - FITTED CURVE
1.2-

DENSITY
-1.2-

(uA/sqcm)

-3.6

-6 0 . -, . -,,

-260 -256 -244 -236 -228 -220

POTENTIAL (mU vs SCE)

Figure 2 Plot of PCCORROS analysis of data file FE551.DAT.

9

APPENDIX A

M342.BAT: BATCH FILE THAT RUNS THE M342 SOFTWARE

@ECHO OFF
CD\PARC
MODE C080
BASICA HELLO
CD\
MODE MONO
MENU

10

APPENDIX B

MODIFICATIONS MADE TO S-F.BAS

This allows the M342 corrosion software to perform reruns.

15450 CLS:INPUT " DO YOU WISH TO DO RERUNS (Y=YES;
N=NO)";RERUN$:IF RERUN$ = "Y" THEN GOSUB 24520 ELSE IF
RERUN$ <> "N" GOTO 15450

15451 CLS:LOCATE 1,20:PRINT L$;:LOCATE 3,20:PRINT L$:A$=
E$(EX) + " TECHNIQUE":LOCATE 2:GOSUB 19860

15470 TSTART=TIMER:LOCATE 12:A$=" CHECKING SYSTEM ":GOSUB
19860:LOCATE 23:A$=STRING$(40,32) :GOSUB 19860:LOCATE
16:GOSUB 19860:GOTO 17700

17280 R$(0)=E$(EX):A$=R$(1)+".T":DR=2:A=52:GOSUB
18140:RN=1:GP18140:RN=1:GP=1:GOSUB 15370:IF FRUN% = 1 THEN GOTO
24700

17281 GOTO 20050

24520 'THIS IS THE RERUN SETUP ROUTINE
24530 INPUT " HOW MANY RUNS DO YOU WANT";

NRUNS%
24535 INPUT "HOW LONG BETWEEN THE START OF EACH RUN (MIN)";

TRUNS
24540 INPUT " AT WHAT NUMBER WOULD YOU LIKE TO BEGIN";

SNRUN%
24545 INPUT " CONTINUE (Y=YES)";

NUE$
24546 IF NUE$ <> "Y" THEN GOTO 15450
24550 TRUNS = TRUNS*60
24560 RCOUNT%=SNRUN% - 1
24570 FRUN%=1
24580 BASE$=R$(l)
24585 GOSUB 24600
24590 RETURN
24600 'THIS IS THE RERUN ROUTINE TO CHANGE THE NAME
24610 RCOUNT%=RCOUNT%+1
24620 ADD$=STR$(RCOUNT%)
24640 ADDS = RIGHTS(ADD$, (LEN(ADD$)-1))
24650 R$(1) = BASES + ADDS
24660 IF RCOUNT%>= (NRUNS%+SNRUN%-I) THEN FRUN%=0
24670 RETURN
24700 'MAIN RERUN ROUTINE
24710 GOSUB 24600
24720 GOSUB 24860
24730 WHILE TIMR < (TSTART+TRUNS) 'LOOP TO WAIT BETWEEN RUNS
24740 GOSUB 24940: WHILE INT(TIMER) = INT(TIMR)
24750 IF INKEY$ = "D" THEN GOSUB 24800 'EXITS TO DOS SHELL

11

24760 IF INKEY$ = "S" THEN TIMR=(TSTART+TIMR): WEND
24770 WEND
24780 SCREEN 0,0,0: CLS: WIDTH 80
24790 GOTO 15470
24795 'GO TO DOS SHELL, REINITIALIZE WHEN THE SHELL IS EXITED
24800 CLS: WIDTH 80: SCREEN 0,0,0: SHELL :WIDTH 40
24810 BIB=1146!: BIB728=481!: IBINIT1=65535!-BIB-BIB728-8
24820 IBINIT2=IBINITl+3: DEF SEG: BLOAD "BIB.M",IBINITI
24830 IBINIT3=IBINITI+BIB: BLOAD "BIB728.M",IBINIT3
24840 GOSUB 24860
24850 RETURN
24860 'PRINT OUT DISPLAY BETWEEN RUNS
24865 CLS: SCREEN 0,0,0: PRINT
24870 PRINT "Run will begin in MIN":LOCATE 2,4:

PRINT RCOUNT%
24880 PRINT "Total number of runs:";NRUNS%
24890 PRINT "Press 'S' to advance to next run."
24900 PRINT "Press 'D' to go to DOS shell."
24910 PRINT "Type EXIT to exit the DOS shell.":PRINT
24920 PRINT "NOTE:": PRINT "You MUST be in the PARC

subdirectory"
24930 PRINT "before exiting the DOS shell."
24940 'PRINTS TIME AND TIME LEFT
24950 LOCATE 1,12: PRINT TIME$: TIMR = TIMER
24960 IF TIMR < TSTART THEN TIMR = TIMR + 86400!
24970 TR%=INT(TRUNS+TSTART-TIMR)+I: TMIN%=TR%\60:

TSEC%=TR%-TMIN%*60
24980 LOCATE 2,23: PRINT TMIN%;":";TSEC%
24985 RETURN
24990 'LINES CHANGED IN ORDER TO DO RERUNS ARE 15450, 15451,

15470, 17280, 17281, 24520-24990.

12

APPENDIX C

PCCORROS.BAT: BATCH FILE THAT RUNS PCCORROS

ECHO OFF
CLS
CD\PCCORROS
DATA
PCCOR
CD \

13

APPENDIX D

DATA.EXE: READS THE M342 DATA DISKS FOR PCCORROS

'This program reads the data saved by the M342 EG&G PARC
'software from Polarization Resistance experiments. It then
'converts it to ASCII (human readable) form to be analysed by
'the program PCCOR.EXE. The M342 data disk must be in drive
'A and the PCCORROS results disk must be in drive B.

'February, 1989. Allison Hardy.

'VARIABLES:
'CURRENT%: RAW DATA IN THE FORM SAVED BY BASICA
'R$: SETUP PARAMETERS IN THE .T FILE CREATED BY THE

M342 SOFTWARE
'FNVALR: CONVERTS A R$ VALUE INTO NUMERICAL FORM TO USE IN

CALCULATIONS
'FNAI,FNA2,FNCALC: USED TO CONVERT THE CURRENT DATA INTO

uA/CM-2
'BI,B2: CONSTANTS
'NAMEOFILE$: M342 POLARIZATION RESISTANCE DATA FILE
'DFILE$: NAMEOFILE$ WITH THE PATH AND DRIVE ADDED
'OUTFILE$: OUTPUT FILE, HOLD.ASC, ON DRIVE A: USED BY

PCCOR.EXE
'NOFPOINTS%: NUMBER OF DATA POINTS
'STYLE$: OUTPUT FORMAT FOR THE FILE HOLD.ASC
'EREF: REFERENCE POTENTIAL (Ecorr OR 0)
'VOLTINIT: INITIAL POTENTIAL
'VOLTSEND: FINAL POTENTIAL
'DVOLTS: INCREMENTAL POTENTIAL
'VOLTS: POTENTIAL IN mV VERSES REFERENCE ELECTRODE
'AMPS: CURRENT DENSITY IN uA/CM-2

DIM CURRENT%(4100)
DIM R$(53)
ON ERROR GOTO ERRORHANDLER
'CALCULATIONS
BI = 4096
B2 = 2048
DEF FNVALR (X) = VAL(R$(X))
DEF FNA1 (X) = INT(X / B1)
DEF FNA2 (X) = X - FNA1(X) * BI
DEF FNCALC (X) = -(FNA2(X) + BI * (FNA2(X) > B2)) * (10

(FNA1(X) + 3)) / (FNVALR(27) - 1 *
(FNVALR(27) = 0))

CLS

14

READDATA:
PRINT "INSERT M342 DATA DISK INTO DRIVE B:."
PRINT "INSERT PCCORROS RESULTS DISK IN DRIVE A:."
INPUT "Data File: "; NAMEOFILE$
DFILE$ = "B:\" + NAMEOFILE$
OUTFILE$ = "A:\HOLD.ASC"
OPEN DFILE$ + ".T" FOR INPUT AS #1
FOR I = 0 TO 52

INPUT #1, R$(I)
NEXT I
CLOSE #1
IF R$(0) <> "POLN RESISTANCE" THEN

PRINT "**This file is not a M342 PARC Polarization
Resistance data file.**"

INPUT "Do you wish to continue with the analysis?";ANSWER$
IF ANSWER$ <> "Y" THEN

GOTO READDATA
END IF

END IF
NOFPOINTS% = FNVALR(13)
BLOAD DFILE$ + ".D", VARPTR(CURRENT%(0))
OUTPUTDATA:
STYLE$ = " ########.#### ########.####"
OPEN OUTFILE$ FOR OUTPUT AS #2
PRINT #2, NAMEOFILE$
FOR I = 1 TO NOFPOINTS%

IF RIGHT$(R$(2), 1) = "E" THEN EREF = FNVALR(20) ELSE EREF
= 0

VOLTSINIT = FNVALR(2) + EREF
VOLTSEND = FNVALR(3) + EREF
DVOLTS = FNVALR(21) * SGN(VOLTSEND - VOLTSINIT)
VOLTS = VOLTSINIT + (I - 1) * DVOLTS
AMPS = FNCALC(CURRENT%(I))
PRINT #2, USING STYLE$; AMPS, VOLTS

NEXT I
CLOSE #2

END

ERRORHANDLER:
IF ERR = 53 THEN 'FILE NOT FOUND

PRINT "File not found!"
RESUME READDATA

ELSE
PRINT "Error "; ERR; " occured."
ON ERROR GOTO 0

END IF

15

APPENDIX E

PCCOR.EXE: MAIN PROGRAM USED BY PCCORROS

PROGRAM CorrosionAnalysis;{$N+}

{A program to find the corrosion potential Ecorr, the anodic}
{and cathodic tafel constants ba and bc, the polarization }
{resistance Rp and the corrosion current density Icorr, fuz=}
{the mixed potential region around Ecorr. The data is read }
{from a polarization resistance data file created by the }
{EG&G PARC Model 342 Corrosion Measurement Software using }
{another program, DATA.EXE. The program's basic routine is }
{a nonlinear least squares fit of the data. Output includes }
{the corrosion parameters, their estimated errors, and the }
{relative RMS error of the fitted data. These parameters }
{are stored in a user named output file on drive A. This }
{program was originally written for use on the DEC-20 and }
{has been modified for use on the IBM PS/2 M50Z using Turbo }
{Pascal 4.0. }

USES PCCORSUB;
{Contains procedures spline, decomp, solve, and seval.}

VAR
DATA,PLOTS,LIST,OUT :text;
gradstore,Jac :matrix;
gradient,mgradient,work :svector;
potential,current,voltdata,currdata,BB,CC,DD :vector;
ipvt :isvector;
i,j,m,n,numofpts,count,ans,asn :integer;
Rp,Ecorr,Icorr,ba,bc,cond :real;
detailed :boolean;
results,prin,infile :string;

PROCEDURE dataheader;
CONST

size = 6;
blank = '

TYPE
wordtype ARRAY[I..size] of char;

VAR
ch :char;
i :integer;
seive,keyword :wordtype;

16

PROCEDURE skipblanks;
BEGIN

REPEAT read(DATA,ch) UNTIL (ch<>blank);
END;

PROCEDURE initseive;
VAR i :integer;
BEGIN

skipblanks;
seive[l] :=ch;
FOR i := 2 TO size DO
BEGIN

read(DATA,ch);
seive[i] := ch;

END;
END;

PROCEDURE lookfor(keyword:wordtype);
VAR i integer;
BEGIN

initseive;
REPEAT

write(seive[l]);
read(DATA,ch);
FOR i := 1 TO size-i DO

seive[i] seive[i+1];
seive[size] ch;

UNTIL (seive = keyword);
writeln;
FOR i := 1 TO size DO

write(seive[i]);
END;

BEGIN {dataheader}
writeln('Would you like to read the introduction? yes =

1');
read(ans);
IF ans = 1 THEN
BEGIN

writeln('PCCORROS is a program to find the corrosion
potential Ecorr, the anodic');

writeln('and cathodic tafel constants ba and bc, the
polarization resistance Rp,');

writeln('and the corrosion current density Icorr, from
the mixed potential region');

writeln('around Ecorr. The data is read from a
polarization resistance data file,');

writeln('created by the EG&G PARC Model 342 Corrosion
Measurement System, by');

17

writeln('another program, DATA.EXE. The program can be
run in two modes: detailed');

writeln('or simple. The only difference is the amount
of output to the screen.');

writeln('In detailed mode the program outputs the
gradient, the Jacobian and its');

writeln('construction, the correction vector and its
treatment at each iteration.');

writeln('The simple mode operates the same routines but
suppresses output.');

END;
writeln;
writeln('Do you want a detailed run? yes = 1');
readln;read(ans);
TI ans = 1 THEN detailed := TRUE

ELSE detailed := FALSE;
repeat

writeln;
assign(DATA,'a:\HOLD.ASC');
{$I-}
reset(DATA);
{$I+}
I := IOResult;
IF I <> 0 THEN

begin
writeln('FILE DOES NOT EXIST: MAKE SURE RESULTS DISK

IS IN DRIVE A');
writeln('PRESS "ENTER" TO CONTINUE');
readln;
readln;
end;

writeln;
UNTIL (I = 0);
readln(DATA,infile);

END;{dataheader}

PROCEDURE DataGenerator;

{Takes raw data from the data file HOLD.ASC on drive A and}
{converts current density from uAmps per sqcm to mAmps per}
{sqcm and passes a cubic spline through the data to allow }
{access to points 'between' data points. }

VAR
voltage,amperage,vstp : real;

PROCEDURE SCALE; {Scales uAmps to mAmps}
BEGIN

18

FOR i :=1 TO numofpts DO
BEGIN

current[i] := current[i] /1.0E3;
END;

END;

PROCEDURE reorder; {Reorders decreasing voltage data}
VAR tempvolt,teinpamp :real;

i,nexti :integer;
BEGIN

writeln('reordering');
FOR i := 1 TO (numofpts DIV 2) DO
BEGIN

nexti :=riumofpts + 1-iL;
tempvolt :=potential[i];
tempamp :=current[i];

current~i] :=current[nexti];
potential [nexti] :=tempvolt;
current [nexti] :=tempamp;

END;
END; {reorder}

PROCEDURE viewdata;
BEGIN

writeln;
writeln('Do you want to see the data tabulated ? yes

1');
readln;read(ans);
IF ans = 1 THEN
BEGIN

writeln;
writeln(' Potential Current Potential

Current');
writeln(' (MVolts) (rnAnps) (mVolts)

(mAmps) ');
writein;
FOR j := 1 TO nuinofpts DIV 2 DO

writeln(j:2,potential[j] :8:2,current[j) :15:6,
(j+numofpts DIV 2) :8,potential[j+numofpts DIV
2]:8:2, currentj~j+numofpts DIV 2]:16:6);

END;
END; {viewdata}

BEGIN {datagenerator}

19

i : 0;
WHILE NOT eof(DATA) DO
BEGIN

i := i + 1;
read(DATA,current[i],potential[i]);

END;{WHILE}
numofpts i-l;
scale;
writeln(numofpts:4,' data points read in');
IF potential[l] > potential[4] THEN reorder;
viewdata;
spline(numofpts,potential,current,BB,CC,DD);

END; {datagenerator}

PROCEDURE screendata(window : real);
{Screens out data more than a 'window' away from Ecorr.}

BEGIN
FOR i := 1 TO numdata DO
BEGIN

voltdata[i] :=0; currdata[i] :=O;
END;
j := 0;
FOR i := 1 TO numofpts DO
BEGIN

IF abs(potential[i] - Ecorr) <= window THEN
BEGIN

j := j+l;
voltdata[j] := potential[i];
currdata[j] :=current[i];

END;
END;
count := j;
writeln(count:4,'points in range');

END; {screendata}

PROCEDURE datafit;
{Let L=ln(10), Ecorr be the corrosion potential and E-Ecorr}
{be the overpotential, oP, in millivolts. Let I be the }
{total current density in mAmps/cm-2 and Icorr be the }
{corrosion current density in mAmps/cm-2. Then the equation}
{that governs I wrt P is: }
{ 1. I=Icorr*(exp(L*oP/ba)-exp(-L*oP/bc)) }
{where ba and bc are the anodic and cathodic Tafel }
{constants. Further, the slope of the I vs oP curve at }
{oP=O is a constant @ oP=0, (dI/doP)=i/Rp, where Rp is the }
{polarization resistance and @ oP=0, (dI/doP)=Icorr*ln(10)}
{*(l/ba+i/bc). Thus }
{ 2. l/Icorr=L*Rp*(l/ba+Il/bc). }

20

{Now substitute u=L/ba and v=L/bc and 2. into 1. and get:}
{ 3. 1=(exp(oP*u)-exp(-oP*v)))/(Rp*(u+v)).}

{Now sustitute u=w+a and v=w-a and get:}
{ 4. 1=exp(P*a)*sinh(P*w)/(Rp*w)}

{The variables in equation 4 can be partly or wholly}
{separated. Consider I=I(oP): i)I(oP)/I(-oP)=-exp(2*oP*a)}
{contains only a, ii)sqrt(I(oP)*-I(.-oP))=sinh(oP*w)/(Rp*w)}
(only Rp and w, or substituting Icorr into (ii),}
{iii) sqrt(I(oP)*-I(-oP))=2*Icorr*sinh(oP*w). One variable}
{which has not been delt with yet, Ecorr, is hidden in P or}
(op and since these appear as arguments to the exponential
(it is very necessary to accurately determine Ecorr. The}
{initial approximation to Ecorr is the potential E at which}
{the current density I(E)=O. This is found by solving for}
{the root of spln(E)=Q, where spln is the cubic spline }
{which interpolates the data and this is done using
{Newtor'Is method, xl=xO-y/y'.}

VAR
V1 oP, oPincr ,minoP,wO, suml, sum2 ,sum3 ,sum4 ,yval ,dyval,
templ, temp2 ,L, kp,det, w, sumw, sdevw, estEcorr, range, a,
suma,sdeva,den,z,IoP,Iplus,Iminus,Ip3half,Im3half,
oPrange, rms, newrms, epsilon, alpha, beta ,gamma, sdevlcorr,
sdevba,sdevbc,sdevRp,X : real;
i,j,num,rej,iterations : integer;

FUNCTION sinh(X:real) :real;
VAR Xext :extended;
BEGIN

Xext X;
Xext :=(exp(Xext)-exp(-Xext))/2;
sinh :=Xext;

END;

FUNCTION eval(Vreal) :real;
(Returns from the data spline a current value for a given}
(input potential in mvolts.}
BEGIN

seval (numofpts,V,potential,current,BB,CC,DD,yval,dyval);
eval := yval;

END;

FUNCTION deval(V:real) :real;
(Returns the rate of change of current at a potential.}
BEGIN

seval (numofpts,V,potential,current,BB,CC,DD,yval,dyval);
deval := dyval;

END;

FUNCTION fitcurrent(V,Ecorr,ba,bc,Icorr:real) :real;

21

BEGIN
oP := V-Ecorr;
IF oP <> 0 THEN

fitcurrent Icorr*(exp(L*oP/ba)-exp(-L*oP/bc))
ELSE

fitcurrent 0.0;
END;

FUNCTION rmserr(Ecorr,ba,bc,Icorr:real):real;
VAR suml,sum2 :real;

i,j :integer;
BEGIN

suml 0;sum2 := 0;j := 0;
FOR i 1 TO count DO
BEGIN

oP voltdata[i] - Ecorr;
IF ((abs(oP)>=minoP) AND (abs(oP)<=oPrange+1)) THEN
BEGIN

suml := suml + sqr(currdata[i] - fitcurrent(oP
+Ecorr,Ecorr,ba,bc,Icorr));

sum2 := sum2 + sqr(currdata[i]);
j j+l;

END;
END;
rmserr sqrt(suml/sum2);

END;

PROCEDURE improve(VAR Ecorr,ba,bc,Icorr :real);
{This routine takes initial values of Ecorr, ba, bc, and }
{Icorr and returns improved values, least squares sense, by}
{applying a non-linear Newton iteration in four variables. }
{The iteration is of the form Jo*dX=-G(X) where dX is the }
{correction vector, JO is the Jacobian matrix evaluated at }
{XO and GO is the gradient of the sum of squared errors at }
{XO, the initial parameters. Since there are orders of }
{magnitude difference between the actual parameters Ecorr, }
{ba, bc and Icorr this routine accepts these values as }
{constants and creates its own set of variables epsilon, }
{alpha, beta, and gamma. These new variables are put into }
{the equation for I as multipliers of Ecorr, ba, bc, and }
{Icorr respectively. They are chosen this way so that each}
{of their initial values will be l(one), negating any size }
{effect that would have existed if Ecorr, ba, bc, and Icorr}
{were used directly. After each successful iteration the }
{'constants' Ecorr, ba, bc and Icorr are corrected by }
{multiplication by their corresponding new variable and the}
{new variables are reset to l(one) for the next iteration. }
{The procedure is continued until epsilon, alpha, beta and }
{gamma remain constant at a value of 1(one) or the routine }
{iterates past its maximum allowed runs (user set, default }

22

{of 50).

VAR
templ1, temp2 ,predcurr, error,
pepsilon,palpha,pbeta,pgamma :real;
1, j,m~n :integer;

PROCEDURE grad(eps,alp,beta,gam :real);
VAR maxgrad :real;

I :integer;
BEGIN

{'p' is used to represent differentiation}
pepsilon := ;pgamma :=0;palpha :=0;pbeta :=0;
FOR i 1 TO count DO
BEGIN

oP voltdata(i] - eps*Ecorr;
IF ((abs(oP) >= minoP) AND (abs(oP)<=oPrange+1)) THEN
BEGIN

predcurr :=fitcurrent (voltdata[i], eps*Ecorr,
alp*ba, beta*bc, gam*Icorr);

error currdatafi] - predcurr;
tempi exp(L*oP/ba)/ba;
temp2 exp(-L*oP/bc)/bc;
pepsilon :=pepsilon + (2*error*Icorr*L*Ecorr*

(templ+temp2));
pgamma pgamma +(-2*error*predcurr);
paipha paipha + (2*error*Icorr*L*oP*templ);
pbeta pbeta + (2*error*Icorr*L*oP*temp2);

END;
END;
gradient[l] :=pepsilon;
gradient[2] :=palpha;
gradient[3] :=pbeta;
gradient[4] :=pgamma;

END; {grad}

PROCEDURE jacobian(Ecorr,ba,bc,Icorr :real);
{The Jacobian matrix is made up of the derivatives of}
{the gradient in the form:Jac[i,j] =dqrad[i)/dX~i].}

{This routine approximates the derivatives by a}
{divided difference and further assures that the }
{matrix is exactly symmetric, accounting for some }
{roundoff.}

VAR xn,n,i :integer;
CONST del = 1E-5;
BEGIN

grad(1+del, 1,1,1);
FOR m :=1 TO 4 DO

23

gradstore[1,m] :=gradient[in];
grad(l,1+del,1,1);
FOR in := 1 TO 4 DO

gradstore[2,m) : gradient[mnj;
grad (1, 1, 1+del,1);
FOR in := 1 TO 4 DO

gradstore[3,m] gradient[in];
grad(1, 1,1, 1+del);
FOR mn := TO 4 DO

gradstore[4,m] :=gradient[m];
{Writes out the gradient at the 4 points around current}
{estimate, for use in finding Jacobian.}

IF detailed THEN
BEGIN

writein;
writeln('gradient at each parameter + dell);
FOR mn := 1 TO 4 DO
BEGIN

FOR n :=1 TO 4 DO
write(gradstore[n,n] :18);
writein;

END;
writeiri;

END;
grad (1, 1, 1, 1)
IF detailed THEN
BEGIN

writeln('gradient: dEcorr,dba,dbc,dlcorr');
FOR mn:=1 TO 4 DO

write(gradientn] :18);
writein ;writeln;

END;
FOR mn:= 1 TO 4 DO

FOR n := 1 TO 4 Do
Jac[xn,n] := (gradstore~n,in]-gradient[in])/del;

{Writes out the Jacobian before forced syinietry.}
IF detailed THEN
BEGIN

writeln('Jacobian before symmetry check');
FOR mn := 1 TO 4 DO
BEGIN

FOR n := I TO 4 DO
write(Jacrin,n]:18);

write in;
END;

END;
FOR mn:= 1 TO 4 DO

FOR n:= 1 TO 4 DO
BEGIN

24

IF m<>n THEN
IF m<n THEN Jac[m,n] := (Jac[m,n]+Jac[n,m])/2;

END;
FOR m := 1 TO 4 DO

FOR n := 1 TO 4 DO
IF m>n THEN Jac[m,n]:=Jac[n,m];

IF detailed THEN
BEGIN

writeln;
writeln('Jacobian matrix');
FOR m := 1 TO 4 DO
BEGIN

FOR n := 1 TO 4 DO
write(Jac[m,n]:18);

writeln;
END;
writeln;

END;
FOR m := 1 TO 4 DO
mgradient[m] := -gradient[m];

END; {jacobian}

BEGIN {improve}
jacobian(Ecorr,ba,bc,Icorr);
decomp(order,order,Jac,cond,ipvt,work);
IF abs(cond - 1) < 1E-6 THEN
BEGIN

IF detailed THEN
writeln('Jacobian is singular to working

precision.');
FOR n := 1 TO 4 DO

mgradient[n] := 20* mgradient[n];
IF detailed THEN

writeln('Negative gradient followed to a new
point.');

END
ELSE
BEGIN

solve(order,order,Jac,mgradient,ipvt);
END;
IF detailed THEN
BEGIN

writeln('Initial correction vector.');
FOR n := 1 TO 4 DO

write(mgradient[n]:18);
writeln;

END;
WHILE((abs(mgradient[1])>0.5)

OR(abs(mgradient[2])>0.5)

25

OR (abs(mgradieltf3])>0.5)
OR (abs(mgradient[4])>0.5))DO

BEGIN
FOR i :=1 TO 4 DO
mgradient~i] := mgradient~j/2;
IF detailed THEN

write(' 50% parameter change exeeded:1);
IF detailed THEN

writeln(' Reduced correction by half');
END; {while}
newrms := rrserr(Ecorr*(l+mgradient~l]), ba*(1+

mgradient[2]), bc*(l4-mgradielt[3]) ,Icorr*(l+mgradient[4fl);
j := 0;
WHILE ((newrms > rms) AND (j < 25)) DO
BEGIN

FOR i := 1 TO 4 DO
mgradientji] :=mgradient[i]/2;

IF detailed THEN
writeln('Error overshoot: reduced correction by

half');
newrms := rmserr(Ecorr*(+ngradielt[l]) ,ba*(l+

mgradientj2]), bc*(l+mgradient(3]) ,Icorr*(l+ngradielt[~4]));
j := j1
IF j =25 THEN
begin

writeln('No further improvement available.');
ans := 99;

end;
END; {while}
epsilon :=l+mgradient[l];
alpha :l+mgradient[2];
beta :-l+mgradient[3 I;
gamma . 1+mgradient[4];
IF ((abs(mgradient[1])<1E-6) AND (abs(mgradient[2])<1E-6)

AND (abs(mgradient[3j)<1E-6) AND (abs(mgradient[4])<1E-6))
THEN

BEGIN
writeln('No further improvement available.');
ans := 99;

END;
if j = 25 THEN

newrms := rms;
ELSE BEGIN

Ecorr : =Ecorr*epsilon;
ba :=ba*alpha;
bc :=bc*beta;
Icorr :=Icorr*gamrma;

END;
IF((ba <= O)OR(bc <= 0)) THEN
BEGIN

26

writeln('Negative tafel constants reached.');
END;

Rp :=((ba*bc)/I(ba+bc)) /(L*Icorr);
if detailed then begin

write in;
writeln(' Ecorr ba bc Icorr Rp');
writeln(Ecorr:8:2,ba:lO:2,bc:lO:2,Icorr:12:6,Rp:12:O);

end;
END;f{improve }

PROCEDURE stats;
VAR i :integer;
BEGIN

j:=O; mn:=0 ; n:=O;
sdevlcorr :=O; sdevba:=O; sdevbc:=O; sdevRp:=O;
FOR i 1 TO count DO
BEGIN

oP voltdata[i]-Ecorr;
IF ((abs(oP)>=minoP) AND (abs(oP)<=oPrange)) THEN
BEGIN

j =jl
IoP :=currdata[i];
tempi :=exp(L*oP/ba);
temp2 :=exp(-L*oP/bc);
sdevlcorr :=sdevlcorr+sqr(Icorr-IoP/(templ-temp2));
sdevRp :=sdevRp+sqr(Rp- ((tempi- temp2)/I(L* (1/ba +

1/bc) *IoP))) ;
IF oP > 0 THEN
BEGIN

m:=rn+l;
sdevba:=sdevba+sqr(ba-L*oP/ln(temp2+IoP/Icorr))

END
ELSE
BEGIN

n: =n+1;
sdevbc =sdevbc+sqr (bc+L*oP/in (templ-IoP/Icorr));

END;
END;

END;
sdevlcorr :=sqrt(sdevlcorr/ (j-1));
sdevRp :=sqrt(sdevRp/ (j-1));
sdevba :=sqrt (sdevba/ (r-i));
sdevbc :=sqrt(sdevbc/ (n-i));

END; {stats}

27

BEGIN {datafit}
L:=ln(l0);

{This is Newton's iteration loop for Ecorr. The initial}
{guess is the rest potential Erest.1

estEcorr :=(potential[l]+potential[numofpts)/2;
REPEAT

Ecorr :=estEcorr;
estEcorr :=Ecorr- (eval (Ecorr) /deval (Ecorr));

UNTIL~abs ((estEcorr-Ecorr) /Ecorr) <=lE-6);
Ecorr :=estEcorr;
writeln('Estimated Ecorr is: ',Ecorr:8:2);
IF abs(potential[1] - Ecorr) <=

abs (potential [numofpts) -Ecorr)
THEN oPrange := abs(potential[1j1-Ecorr) + 0.000001

ELSE oPrange :=abs(potential[numofpts)-Ecorr) + 0.000001;
writeln('Range around Ecorr reduced to: ',oPrange:4:1);
range := oPrange;
screendata (range);
suml:=0; sum2:=0; sum3:=0;

REPEAT

Iplus :=eval(oP+Ecorr);
Iminus :~eval(-oP+Ecorr);
a :=ln(abs(Iplus/Iminus))/ (2*oP);
IF odd(i) THEN
BEGIN

write(' at oP=',oP:5:1);
write(' a =',a:8:6);

END
ELSE
BEGIN

write(' at oP=',oP:5:1);
writeln(' a = ',a:8:6);

END;
sumi := sumi + a;
oP := oP + 0.5;

UNTIL (oP > oPrange);
num := i
a := sumi/num;
writeln('Average a is: ',a:8:6);
REPEAT

write('Enter starting oP: ');
writeln('minimum oP where a becomes reasonably

constant');
readln;read(minoP);ans := 99;
IF ininoP <= 2 THEN
BEGIN

writeln('WARNING : do not start at less than 2');
ans := 98;

28

END
ELSE IF IninoP >=oPrange THEN
BEGIN

writeln('WARNING :data only good to ',oPrange:4:l);
ans :=98;

END;
UNTIL(ans <> 98);
i:=O;suml:=O;sun2:=0;
oP: =minoP;
REPEAT

Iplus :=eval(oP+Ecorr);
Ip3half :=eval(l.5*oP+Ecorr);
Iminus :=eval(-oP+Ecorr);
Iin3half :=eval(-l.5*oP+Ecorr);
teinpi :=sqrt(abs((Ip3half*In3half)/(Iplus*Imilus)))/2;
tempi :=(teipl+sqrt(sqr(templ)+l))/2;
IF tempi > 1.0 THEN
BEGIN

w:=2*ln(templ+sqrt(sqr(templ) -1)) /oP;
i:=i+1;
sumli: =suml+w;

END
ELSE

writeln('Data too scattered at ',oP:4:1,' to give a

oP:=oP+0.5;
UNTIL (oP>=2 *oPrange/ 3);
num:=i;
w: =suinl/num;
writeln('Average w is: 1,w:8:6);
i :O
suini :=0;
oP :=minoP;
REPEAT

Iplus :=eval(oP+Ecorr);
Iminus:=eval (-oP+Ecorr);
a :=ln(abs(Iplus/Iminus))/(2*oP);
sum2 :=sum2+a;
Rp :=sinh(w*oP)/(w*(sqrt(abs(Iplus*Iminus))));
sumi :=suml+Rp;
i :il
oP :=oP+0.5;

UNTIL(oP >= oPrange);
nuin :=i;
a :=sum2/num;
Rp :=suxnh/num;
writeln('Re-estimate of a is: ',a:6:4,' Average Rp is:

0Rp: 8 :0);
Icorr:=1/ (Rp*2*w);
writeln('Estimated Icorr is: ',Icorr:10:8);

29

sum1i: =0; i:=0 ;oP: =-oPrange;
REPEAT

IF (abs(oP)>=minoP) THEN
BEGIN

1 =il

IoP :=abs(eval(oP+Ecorr));
tempi :=IoP/ (2*Icorr*exp(a*oP));
w :=(ln(templ+sqrt(sqr(templ)+1)))/(abs(oP));
IF detailed THEN

writeln(' at ',oP:4:1,' w = 1,w:8:6);
sumi :=suml+w;

END;
oP := oP +0.5;

UNTIL (oP>=oPrange);
num :=i;
w :=suml/num;
writeln('Re-estimate of w is: ',w:l0:8);
ba :=L/(w+a); bc:=L/(w-a); Icorr:=l/(2*w*Rp);
writeln('Initial Ecorr,ba,bc,Icorr and Rp are:');
writeln(Ecorr:6:2,ba:l0:2,bc:l0:2,Icorr:12:6,Rp:12:0);
rms :=rmserr(Ecorr,ba,bc, Icorr);
writeln('Initial relative RNS error is: ',rms:8:6);
writeln('Enter 1 if acceptable.');
readln;read(ans);
WHILE ans <> 1 DO
BEGIN

writeln('Enter ba bc Rp *in mvolts/decade and ohms*');
readln;read(ba,bc,Rp);
Icorr :=((ba*bc) /(ba+bc)) /(L*Rp);
rins :=rmserr(Ecorr,ba,bc, Icorr);
writeln('Relative RMS error = ',rms:8:6);
writeln('Enter 1 if acceptable.');
readln;read (ans);

END;
iterations := 0;
ans := 1;
REPEAT

improve(Ecorr,ba,bc, Icorr);
iterations := iterations + 1;
rms := newrxns;
if iterations =25 then

begin
iterations :=0;
writeln('25 iterations have been done. Do you wish
to do 25 more? (l=YES)'); readln;read(ans);
if ans <> 1 then

ans := 99;
end;

if detailed then
writeln('Relative RMS error now = ',rms:8:6);

30

UNTIL ans=99;
stats;
writeln('Do you want results on the printer ?(Y =yes)');

readln;read(prin);
if prin='Y' THEN

ASSIGN(OUT, 'LPT1')
ELSE

ASSIGN(OUT, 'CON');
append (OUT) ;
writein;
writein (OUT);
writeln(OUT, '--- 1);

writeln(OUT, 'File ',infile);
writeln(OUT, 'relative RMS error = ',rms:8:6);
writeln(OUT, 'Ecorr = ',Ecorr:7:2,1 millivolts');
writeln(OUT,'Icorr = ',Icorr*lE3:7:5,'
+/-',sdevlcorr*1E3:7:5,' microamps/cm-2'); writeln(OUT, 'ba
= ',ba:6:2,' +/- ',sdevba:6:2,' millivolts');
writeln(OUT,'bc = ',bc:6:2,' +/- ',sdevbc:6:2,'

millivolts') ;
writeln(OUT,'Rp = ',Rp*lE-3:6:2,' +1-

,sdevRp*1E-3:5:2,' kohms');
writeln(OUT,1 '--)

writeln (OUT);
CLOSE(OUT);
repeat

writeln('Results FILE name ?');
readln;read (results);

until results <> 1';
assign(LIST, 'a:\'+results+' .res');
{$I-}
append (LIST) ;
{$I+}
if IOResult <> 0 then

rewrite (LIST) ;
writein (LIST);
writeln(LIST, '---

writeln(LIST, 'File ',infile);
writeln(LIST, 'relative RMdS error = ',rms:8:6);
writeln(LIST, 'Ecorr = ',Ecorr:7:2,' millivolts');
writeln(LIST, 'Icorr = ',Icorr*1E3:7:5,'
+/-' ,sdevlcorr*1E3:7:5,' microamps/cm'-2');
writeln(LIST,'ba = ',ba:6:2,' +/- ',sdevba:6:2,'
millivolts');
writeln(LIST,'bc = 1,bc:6:2,' +/- ',sdevbc:6:2,'

millivolts');
writeln(LIST,'Rp = 1,Rp*lE-3:6:2,' +/-

',sdevRp*lE-3:5:2,' kohms');
writeln(LIST, '--;

writeln(LIST);

31

close (LIST) ;

ASSIGN(PLOTS,'A:\'+INFILE+'.DAT');
ASSIGN(LIST,'A:\'+INFILE+'.FIT');
REWRITE (PLOTS) ;
REWRITE (LIST) ;
FOR I := 1 TO COUNT DO

BEGIN
WRITELN(PLOTS,VOLTDATA[I]:15,', ',CURRDATA[I]*1E3:15);
WRITELN(LIST,VOLTDATA[I]:15,', ',FITCURRENT

(VOLTDATA[I], Ecorr,ba,bc,Icorr)*lE3:15);
END;

CLOSE(PLOTS);
CLOSE (LIST);

END;{datafit}

BEGIN {main}

dataheader;
{Opens the data file and reads in the M342 data file name. }
{Displays the instructions and sets up a simplified or }
{detailed run. }

datagenerator;
{Reads in raw data in mVolts and uAmps and stores it in }
{arrays POTENTIAL and CURRENT in mVolts and mAmps. POTENTIAL}
{is checked to ensure it is in ascending order, then an }
{interpolating cubic spline is passed through the data. }

datafit;
{Determines constants Ecorr, ba, bc, Icorr and Rp by first }
{making substitutions for the constants then separating the}
{equation into parts, each with one or two constants. Then}
{solves each equation for approximations to its constant(s).}
{These are then used as the initial parameters to a non- }
{linear least squares fitting routine which calculates the }
{gradient and the Jacobian matrix to the sum of squared }
{errors and generates a correction to each parameter. The }
{iteration continues until the size of the corrections }
{become small enough that no further improvement can be }
{made. The constants are then output with ther estimated }
{error and the predicted data are tabulated with the actual}
{data. }

END.{main}

32

APPENDIX F

PCCORSUB.TPU: TURBOPASCAL UNIT USED BY PCCOR.EXE

Contains subroutines SOLVE7 , DECOMP7 , SEVAL7 and SPLINE7 .

UNIT PCCORSUB;{$N+}
INTERFACE
CONST numdata = 200;

order = 4;
TYPE index = 1..numdata;

sindex = 1..order;
svector = ARRAY(sindex] of real;
isvector = ARRAY[sindex] of integer;
vector = ARRAY[index] of real;
matrix = ARRAY[sindex,sindex] of real;

PROCEDURE SPLINE(N:integer;X,Y:vector;VAR B,C,D:vector);
PROCEDURE DECOMP(NDIM,N:integer;VAR A:matrix;VAR COND:real;

VAR IPVT:isvector;VAR WORK:svector);
PROCEDURE SEVAL(N:integer;U:real;X,Y,B,C,D:vector;VAR VALU,

DVAL:real);
PROCEDURE SOLVE(NDIM,N:integer;VAR A:matrix;VAR B:svector;VAR

IPVT: isvector);

IMPLEMENTATION
PROCEDURE SOLVE;
{Solution of linear system, A*X=B. Not used if DECOMP}
{has detected singularity. }
{INPUT: }
{NDIM= Declared row dimension of array containing A. }
{N = Order of matrix. }
{A = Triangularized matrix obtained from DECOMP. }
{B = Right hand side vector. }
{IPVT= Pivot vector obtained from DECOMP. }
{OUTPUT: }
{B = Solution vector, X. }

VAR
KB,KM1,NM1,KP1I,K,M :INTEGER;
T :real;

BEGIN
IF (N <> 1) THEN {Forward elimination}
BEGIN

NMI := N - 1;
FOR K := 1 TO NMI DO
BEGIN

KP1 := K + 1;

33

M :=IPVT[K];
T B[M];B[M] :=B[K] ;
B[K] T;
FOR I := KPI TO N DO

B[I] := B[I] + A[I, K] * T;
END;

{Back substitution}
FOR KB := 1 TO NMI DO
BEGIN

KMI := N - KB;
K := KMI + 1;
B[K] := B[K] / A[K, K];
T := -B[K];

FOR I := 1 TO KMI DO
B[I] := B[I] + A[I, K] * T;

END;
END;B[1] := B[1] /A[1, 1];
END;

PROCEDURE DECOMP;
{Decomposes a real matrix by Gaussian elimination and }
{estimates the condition of the matrix. }
{Uses SOLVE to compute solutions to linear systems. }{ }
{INPUT:
{NDIM = Declared row dimension of the array containing A. }
{N = Order of the matrix. }
{A = Matrix to be triangularized. }{ }
{OUTPUT: }
{A contains an upper triangular matrix U and a permutated
{version of a lower triangular matrix I-L so that:
{(permutation matrix)*A = L*U. }{ }
{COND = An estimate of the condition of A. }
{For the linear system A*X=B, changes in A and B may cause }
{changes COND times as large in X. If COND+l.0 = COND, A }
{is singular to working precision. COND=l.0+32 if exact }
{singularity is detected. }{ I
{IPVT = The pivot vector. }
{IPVT(K) = The index of the K-th pivot row. }
{IPVT(N) = (-1)-(number of interchanges) }{ }
{Work space: The vector work must be declared and includedl
{in the call. Its input contents are ignored. Its output }
{contents are usually unimportant. I
{ }

34

{The determinant of A can be obtained on output by }
{DET(A) = IPVT(N)*A(1,1)*A(2,2)*...*A(N,N). }

VAR
NM1, I, J, K, KP1, KB, KMI, M : INTEGER;
EK, ANORM, YNORM, ZNORM, T :EXTENDED;
AT : ARRAY[I..4,1..4] OF EXTENDED;
CONDT :EXTENDED;
WORKT :ARRAY[I..4] OF EXTENDED;

PROCEDURE CHANGES;
VAR I,J:INTEGER;
{CHANGE EXTENDED VARIABLES TO REAL}
BEGIN

COND CONDT;
FOR I 1 TO N DO
BEGIN

FOR J := 1 TO N DO
A[I,J] := AT[I,J];

WORK[I] := WORKT[I];
END;

END;
{END OF CHANGES}

BEGIN {CHANGE REAL VARIABLES TO EXTENDED}
CONDT := COND;
FOR I 1 TO N DO
BEGIN

FOR J := 1 TO N DO
AT[I,J] := A[I,J];

WORKT[I] := WORK[I];
END; {END OF CHANGES}
IPVT[N] := 1;
IF (N <> 1) THEN
BEGIN {Compute 1-norm of A}

NM1 := N - 1;
ANORM 0.0;
FOR J 1 TO N DO
BEGIN

T := 0;
FOR I := 1 TO N DO

T := T + ABS(AT[I, J]);
IF (T > ANORM) THEN ANORM := T;

END;
{Gaussian elimination with partial pivoting}
FOR K := 1 TO NMI DO
BEGIN

KPl := K + 1;
M := K;
{Find pivot}

35

FOR I := KPI TO N DO
BEGIN

IF (ABS(AT[I, K]) > ABS(AT[M, K])) THEN M I;
END;
IPVT[K] := M;
IF (M <> K) THEN IPVT[N] := -IPVT[N];
T := AT[M, K];
AT[M, K] AT[K, K];
AT[K, K] T;
{Skip step if pivot is zero.}
IF (ABS(T) > 1E-9) THEN
BEGIN

{Compute multipliers.}
FOR I := KP1 TO N DO

AT[I, K] := -ATCI, K] / T;
{Interchange and eliminate by columns.}
FOR J KPI TO N DO
BEGIN

T AT(M, J];
AT[M, J] AT[K, J];
AT[K, J] T;
IF (ABS(T) > 1E-9) THEN
BEGIN

FOR I := KPI TO N DO
AT[I, J] := AT[I, J] + AT[I, K] *T

END;
END;

END;
END;

{COND = (1-NORM of A)*(an estimate of 1-NORM of A-inverse) }
{Estimate obtained by one step of inverse iteration for the}
{small singular vector. This involves solving two systems }
{of equations, (A-transpose)*Y=E and A*Z=Y where E is a }
{vector of +1 or -1 chosen to cause growth in Y. }
{Estimate = (1-NORM of Z)/(l-NORM of Y) }
{Solve(A-TRANSPOSE)*Y=E }

FOR K I TO N DO
BEGIN

T =0.0;
IF (K > 1) THEN
BEGIN

KMI := K - 1;
FOR I 1 TO KMI DO

T := T + AT[I, K] * WORKT[I];
END;
EK := 1;
IF (T < 0) THEN EK := -1.0;
IF (ABS(AT[K, K]) < 1E-9) THEN
BEGIN

36

CONDT :=1.0+32;
CHANGES;
EXIT;

END;
WORKT[K] := -(EK+T) / AT[K,K];

END;
FOR KB 1 TO NM1 DO
BEGIN

K N - KB;
T 0;
KP1 := K + 1;
FOR I KP1 TO N DO

T T + AT[I, K] * WORKT[I];
WORKT[K] := T;
M := IPVT[K];
IF (M <> K) THEN
BEGIN

T := WORKT[M];
WORKT[M] WORKT[K];
WORKT[K] T;

END;
END;
YNORM 0;
FOR I I TO N DO
BEGIN

YNORM := YNORM + ABS(WORKT[I]);
END;
{Solve A*Z=Y}
CHANGES;
SOLVE(ndim,n,A,work,ipvt);
FOR I := 1 TO N DO
BEGIN

FOR J := 1 TO N DO
AT[I,J] := A[I,J];

WORKT[I] := WORK[I];
END;
ZNORM 0;
FOR I 1 TO N DO
BEGIN

ZNORM := ZNORM + ABS(WORKT[I]);
END;
{Estimate condition}
CONDT := ANORM * ZNORM / YNORM;
IF (CONDT < 1.0) THEN CONDT := 1.0;
CHANGES;
EXIT;

END;
{1-BY-1}
CONDT := 1;
IF (ABS(AT[I, 1]) > IE-9) THEN

37

BEGIN
CHANGES;
EXIT;

END;
{Exact singularity.}
CONDT := 1.0+32;
CHANGES;
END;

PROCEDURE SEVAL;
{This subroutine evaluates the cubic spline function and }
{its derivative and returns VAL and DVAL. }
{VAL = Y(I)+B(I)*(U-X(I))+C(I)*(U-X(I))-2+D(I)*(U-X(I))^3}
{DVAL = B(I)+2*C(I)*(U-X(I))+3*D(I)*(U-X(I)) 2 }
{Where X(I) < U < X(I+1), using Horner's rule. }
{If U < X(1) then I=1 is used. }
{If U >= X(N) then I=N is used. }{ }
{INPUT: }
{N = The number of data points. }
{U = The abscissa at which the spline is to be evaluated.}
{X,Y = The arrays of data abscissas and ordinates. }
{B,C,D = Arrays of spline coefficients computed by spline. }{ }
{If U is not in the same interval as the previous call, }
{then a binary search is performed to determine the proper }
{interval. }

VAR
I, J, K : INTEGER;
DX : real;

BEGIN
I :=i;
IF (U >= X[I]) THEN

IF (U <= X[I+I]) THEN
BEGIN

DX := U-X[IJ;
VALU Y[I]+DX*(B[I]+DX*(C[I]+DX*D[I]));
DVAL B[I]+DX*(2*C[I)+DX*(3*D[I]));
EXIT;

END;
I 1= ;

J := N+1;
{Binary search.}
REPEAT

K:=(I+J) DIV 2;
IF (U < X[K]) THEN J:=K;
IF (U >= X[K]) THEN I:=K;

UNTIL (J <= (I+1));

38

{Evaluate spline and derivative.}
DX :=U -X[]
VALU Y[I] + DX * (B[I] + DX * (C[I] + DX * I])
DVAL B[Ij + DX * (2 * C[I] + DX * (3 * [);

END;

PROCEDURE SPLINE;
{The coefficients B(I), C(I), and D(I), I=1,2,...,N are}
{computed for a cubic interpolating spline.}
{S(X) = Y(I)+B(I)*(X-X(I))+C(I)*(X-X(I))-2+D(I)*(X-X(I))V3}
{for X(I) <= X <= X(I+l)}

{INPUT:}
{N = The number of data points or knots (N >= 2) }
{X = The abscissas of knots in strictly increasing order}
{Y = The ordinates of the knots}

{OUTPUT:}
{B,C,D =Arrays of spline coefficients as defined above}
{Using P to denote differentiation,}
MYI) = S(XI)
{B(I) = SP(X(I))}
{C(I) = SPP(X(I))/2}
{D(I) = SPPP(X(I))/6 (Derivative from the right.)}
{The procedure SEVAL is used to evaluate the spline and}
{its derivative.}

VAR
NM1, IB, I :INTEGER;
T :real;

BEGIN
NMIl: N - 1;
IF (N < 2) THEN EXIT;
IF (N >= 3) THEN
BEGIN

{Set up tridiagonal system.}
{B=Diagonal, D=Offdiagonal, C=Right hand side}
D[1] X[2] -X1]

C[2] (Y[2] - Y[1]) /D[1);
FOR I1: 2 TO NM1 DO

BEGIN
D[I] :=X[I + 1] X[]
B[I] 2 *(D[I -1] + DI)
C[I + 1) (Y[I + 1] - Y(I]) / D[I];
C[I] := C[I + 1] - []

END;
{End conditions. Third derivative at X(1) and X(N)}
{obtained from divided differences.}
B[1] D)]
B[N] :=-D(N - 1);

39

C[l] 0;
C[N] 0;
IF (N <> 3) THEN
BEGIN

C[I] C[3] / (X[4] - X[2]) - C[2] / (X[3] - X[1]);
C[N] C[N - 1] / (X[N] - X[N - 2]) - C[N - 2] /

(X[N - 1] - X[N - 3]);
C[1] C[1] * SQR(D[I]) / (X[4] - X[I]);
C[N = -C[N] * SQR(D[N - 1]) / (X[N] - X[N - 3]);

END;
{Forward elimination}
FOR I := 2 TO N DO
BEGIN

T := D[I - 1] / B[I - 1];
B[I] B[I] - T * D[I - 1];
C[I] C[I] - T * C[I - 1];

END;
{Back substitution}
C[N]:= C[N] / B[N];
FOR IB := 1 TO NM1 DO
BEGIN

I := N - IB;
C[I] := (C[I] - D[I] * C[I + 1]) / B[I];

END;
{Compute polynomial coefficients.}
B[N] (Y[N] - Y[NM]) / D(NM1] + D[NM1] * (C[NMI] + 2•C[N]) ;
FOR I 1 TO NM1 DO
BEGIN

B[I] (Y[I + 1] - Y[I]) / D[I] - D[I] * (C[I+I]
+ 2 * C[I]);

D[I] (C[I + 1] - C[I]) / D[I];
C[I] 3 * C[I];

END;
C[N] := 3 *CN;
D(N] D[N - 1];
EXIT;

END;
B[1] (Y[2] - Y[1]) / (X[2] - X[I]);
C[1] := 0;
D[1] 0

END;
END.

40

APPENDIX G

SIMPLIFIED PCCORROS RUN

Would you like to read the introduction? yes = 1
2

Do you want a detailed run? yes = 1
2

100 data points read ii'

Do you want to see the data tabulated ? yes = 1
2
Estimated Ecorr is: -237.69
Range around Ecorr reduced to: 15.3

62points in range
at oP= 5.0 a = -0.008587 at oP= 5.5 a = -0.005321
at oP= 6.0 a = -0.002811 at oP= 6.5 a = -0.002065
at oP= 7.0 a = -0.003319 at oP= 7.5 a = -0.006285
at oP= 8.0 a = -0.008199 at oP= 8.5 a = -0.006307
at oP= 9.0 a = -0.006264 at oP= 9.5 a = -0.006371
at oP= 10.0 a = -0.007122 at oP= 10.5 a = -0.004228
at oP= 11.0 a = -0.002421 at oP= 11.5 a = -0.003676
at oP= 12.0 a = -0.005147 at oP= 12.5 a = -0.005323
at oP= 13.0 a = -0.003477 at oP= 13.5 a = -0.003513
at oP= 14.0 a = -0.003755 at oP= 14.5 a = -0.003211
at oP= 15.0 a = -0.003721Average a is: -0.004815

Enter starting oP: minimum oP where a becomes reasonably
constant
5
Data too scattered at 5.0 to give a w.
Data too scattered at 8.0 to give a w.
Data too scattered at 8.5 to give a w.
Data too scattered at 9.0 to give a w.
Average w is: 0.054312
Re-estimate of a is: -0.0048 Average Rp is: 3072
Estimated Icorr is: 0.00299712
Re-estimate of w is: 0.05433495
Initial Ecorr,ba,bc,Icorr and Rp are:
-237.69 46.50 38.93 0.002996 3072
Initial relative RMS error is: 0.026588
Enter I if acceptable.
1

No further improvement available.
Do you want results on the printer ?(Y = yes)
N

41

File FE551
relative RMS error = 0.020926
Ecorr = -237.56 millivolts
Icorr = 3.69377 +/- 0.08267 microamps/cm-2
ba = 55.47 +/- 1.81 millivolts
bc = 47.97 +/- 1.40 millivolts
Rp = 3.02 +/- 0.07 kohms

Results FILE name ?
TEST

42

APPENDIX H

DATA kILE FL551.DAT

POTENTIAL(mV) CURRENT(mA/cm-2)

-2.530000E+0002, -5.991200E+0000
-2.525000E+0002, -5.591800E+0000
-2.520000E+0002, -5.297500E+0000
-2.515000E+0002, -5.066200E+0000
-2.510000E+0002, -4.814000E+0000
-2.505000E+0002, -4.624800E+0000
-2.500000E+0002, -4.456600E+0000
-2.495000E+0002, -4.267400E+0000
-2.490000E+0002, -4.057200E+0000
-2.485000E+0002, -3.868000E+0000
-2.480000E+0002, -3.741900E+0000
-2.475000E+0002, -3.552700E+0000
-2.470000E+0002, -3.384500E+0000
-2.465000E+0002, -3.258400E+0000
-2.460000E+0002, -3.048100E+0000
-2.455000E+0002, -2.863100E+0000
-2.450000E+0002, -2.495300E+0000
-2.445000E+0002, -2.308200E+0000
-2.440000E+0002, -2.144200E+0000
-2.435000E+0002, -2.009700E+0000
-2.430000E+0002, -1.866700E+0000
-2.425000E+0002, -1.713300E+0000
-2.420000E+0002, -1.503000E+0000
-2.415000E+0002, -1.311800E+0000
-2.410000E+0002, -1.156200E+0000
-2.405000E+0002, -9.838000E-0001
-2.400000E+0002, -8.829000E-0001
-2.395000E+0002, -7.105000E-0001
-2.390000E+0002, -4.436000E-0001
-2.385000E+0002, -2.733000E-0001
-2.380000E+0002, -9.520000E-0002
-2.375000E+0002, 4.370000E-0002
-2.370000E+0002, 1.308000E-0001
-2.365000E+0002, 2.674000E-0001
-2.360000E+0002, 3.597000E-0001
-2.355000E+0002, 4.303000E-0001
-2.350000E+0002, 6.243000E-0001
-2.345000E+0002, 1.082600E+0000
-2.340000E+0002, 1.259200E+0000
-2.335000E+0002, 1.400000E+0000
-2.330000E+0002, 1.530400E+0000

43

-2.325000E+0002, 1.698500E+0000
-2.320000E+0002, 1.881400E+0000
-2.315000E+0002, 2.053800E+0000
-2.310000E+0002, 2.194700E+000
-2.305000E+0002, 2.297700E+0000
-2.300000E+0002, 2.465800E+0000
-2.295000E+0002, 2.667600E+0000
-2.290000E+0002, 2.882100E+0000
-2.285000E+0002, 2.993500E+0000
-2.280000E+0002, 3.079700E+0000
-2.275000E+0002, 3.233100E+0000
-2.270000E+0002, 3.607300E+0000
-2.265000E+0002, 3.760800E+0000
-2.260000E+0002, 3.819600E+0000
-2.255000E+0002, 3.861700E+0000
-2.250000E+0002, 4.061400E+0000
-2.245000E+0002, 4.393500E+0000
-2.240000E+0002, 4.498600E+0000
-2.235000E+0002, 4.750900E+0000
-2.230000E+0002, 5.003200E+0000
-2.225000E+0002, 5.213400E+0000

44

APPENDIX I

PRINTOUT OF A PCCORROS RESULTS FILE

File FE551
relative RMS error = 0.020926
Ecorr = -237.56 millivolts
Icorr = 3.69377 +/- 0.08267 microamps/cm-2
ba = 55.47 +/- 1.81 millivolts
bc = 47.97 +/- 1.40 millivolts
Rp = 3.02 +/- 0.07 kohms

File FE552
relative RMS error = 0.030113
Ecorr = -244.75 millivolts
Icorr = 1.74461 +/- 0.06352 microamps/cm-2
ba = 37.89 +/- 1.20 millivolts
bc = 40.86 +/- 2.23 millivolts
Rp = 4.89 +/- 0.17 kohms

File FE553
relative RMS error = 0.087937
Ecorr = -238.68 millivolts
Icorr = 1.99252 +/- 0.11613 microamps/cm-2
ba = 33.01 +/- 1.67 millivolts
bc = 54.15 +/- 3.65 millivolts
Rp = 4.47 +/- 0.26 kohms

File FE554
relative RMS error = 0.034270
Ecorr = -235.64 millivolts
Icorr = 1.79764 +/- 0.08619 microamps/cm-2
ba = 33.65 +/- 1.24 millivolts
bc = 37.62 +/- 2.59 millivolts
Rp = 4.29 +/- 0.19 kohms

45

File FE555
relative RMS error = 0.027763
Ecorr = -233.08 millivolts
Icorr = 1.84006 +/- 0.06822 microamps/cm-2
ba = 33.49 +/- 1.29 millivolts
bc = 36.24 +/- 1.69 millivolts
Rp = 4.11 +/- 0.14 kohms

File FE556
relative RMS error = 0.030861
Ecorr = -228.06 millivolts
Icorr = 2.00665 +/- 0.05716 microamps/cm-2
ba = 34.05 +/- 0.64 millivolts
bc = 37.37 +1- 1.42 millivolts
Rp = 3.86 +/- 0.11 kohms

File FE557
relative RMS error = 0.033995
Ecorr = -223.22 millivolts
Icorr = 2.31465 +/- 0.07973 microamps/cm-2
ba = 36.55 +/- 1.11 millivolts
bc = 39.10 +/- 1.79 millivolts
Rp 3.54 +/- 0.12 kohms

File FE558
relative RMS error = 0.032829
Ecorr = -219.41 millivolts
Icorr = 2.57045 +/- 0.08475 microamps/cm-2
ba = 33.28 +/- 1.04 millivolts
bc = 35.85 +/- 1.42 millivolts
Rp = 2.92 +/- 0.09 kohms

46

File FE559
relative RMS error = 0.036933
Ecorr = -213.04 millivolts
Icorr = 3.80187 +1- 0.15673 microamps/cm-2
ba 36.98 +/- 1.95 millivolts
bc = 42.86 +/- 2.09 millivolts
Rp = 2.27 +/- 0.09 kohms

File FE5510
relative RMS error = 0.034996
Ecorr = -206.91 millivolts
Icorr = 3.48532 +/- 0.13455 microamps/cinf2
ba = 35.82 +/- 1.59 millivolts
bc = 35.87 +/- 1.66 millivolts
Rp = 2.23 +/- 0.08 kohms

File FE5511
relative RMS error = 0.033866
Ecorr = -199.15 millivolts
Icorr = 2.66925 +/- 0.10185 microamps/cm-2
ba = 30.41 +/- 0.98 millivolts
bc = 31.05 +/- 1.43 millivolts
Rp = 2.50 +/- 0.09 kohms

File FE5512
relative RMS error = 0.033131
Ecorr = -193.85 millivolts
Icorr = 2.68506 +/- 0.09301 microamps/cm-2
ba = 33.46 +/- 0.76 millivolts
bc = 32.35 +1- 1.49 millivolts
Rp = 2.66 +/- 0.09 kohms

47

APPENDIX J

INSTALL.BAT: BATCH FILE THAT INSTALLS PCCORROS

@ECHO OFF
ECHO This batch file will install PCCORROS on drive C from

any other drive.
ECHO The subdirectory PCCORROS will be created and all the

files copied to it.
ECHO The batch file PCCORROS.BAT will be copied to the root

directory. To run
ECHO PCCORROS move to the root directory of drive C and type

in "PCCORROS".
PAUSE
COPY \PCCORROS\PCCORROS.BAT C:\
MD C:\PCCORROS
COPY \PCCORROS*.* C:\PCCORROS
C:
CD\

48

REFERENCES

1. Hanham, C.M., Gallagher, P.J., "CORROS: A Computer
Program For Analyzing Polarization Resistancp Data",
DREA Technical Communication 86/303, April 1986.

2. National Instruments Corporation, MC-GPIB User Manual
for the IBM Personal System/2 Computer Family with Micro
Channel Architecture, Austin, Texas, March 1988.

3. International Business Machines Corporation, IBM
Personal System/2 Model 50 Quick Reference, third ed.,
April 1988.

4. Princeton Applied Research Corp., Model 342 SOFTCORR
Corrosion Measurement Software Operating Manual,
Princeton, New Jersey, 1986.

5. International Business Machines Corporation, Disk
Operating System Version 3.30: Reference, First ed.,
April 1987.

6. Princeton Applied Research Corp., HEAD START Creative
Electrochemistry Software Preliminary Operating Manual,
Princeton, New Jersey, 1986.

7. Forsythe, G.E., Malcolm, M.A. and Moler, C.B., "Computer
Methods For Mathematical Computations", Prentice-Hall,
Inc., Toronto, p. 76, 1977.

8. Borland International, TurboPASCAL Owner's Handbook
Version 4.0, Scotts Valley, California, 1987.

9. American Society for Metals, EnPlot, Metals Park, Ohio,
1986.

10. Donahue, F.M., "Electrochemical Techniques in Corrosion
Studies", Corrosion Chemistry, ACS Symposium Series 89,
Brubaker, G.R. and Phipps, P.B.P., Eds., American
Chemical Society, Washington, p. 52, 1979.

49

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM4
(highest classification of Title. Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classed)

1. ORIGINATOR (the name and address of the organization prepan-- ,e do~urn.t 2. SECURITY CLASSIFICATION (overall secuy
Organizations tor whom the document was prepared. e.g. Establishment sponsonng a classification of the document. including
contractor's report, or tasking agency, are entered in section 8.) special warning terms " applicable)

Defence Research Establishment Atlantic UNCLASSIFIED

3 TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation

(S.C,R or U) in parentheses after the title.)

IBM PC Analysis of Polarization Resistance Data

4. AUTHORS (Last name, first name, middle Initial. If military, show rank. e.g. Doe, Maj. John E.)

Hardy, A.E. and Hanham, C.M.

5. DATE OF PUBLICATION (month and year of publication of document) 6a.NO OF PAGES (total containing 6b NO OF REFS (Iotla cited ir

information. Include Annexes, document)
July 1989 Appendices. etc.) 10

6. DESCRIPTIVE NOTES (the category of the document. e.g. technical report, technical note or memorandum. If appropriate. enter the type o
report. e.g. interim, progress. summary. annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Communication

8. SPONSORING ACTIVITY (the name of the deparl.nont project office or laboratory sponsoring the research and development. Include the
address.)

Defence Research Establishment Atlantic

9a. PROJECT OR GRANT NO. (it appropnate, the applicable research and gtb. CONTRACT NO. (if appropnate, the applicable number uno'
development project or grant number under which the document was which the document was written)
written. Please specify whether project or grant)

Project No. IAI

1 a. ORIGINATOR'S DOCUMENT NUMBER (the official document 1 ob. OTHER DOCAAENT NOS. (any other numbers which may be
number by which the document is identified by the originating assigned this document either by the onginator or by the

activity. This number must be unique to this document.) sponsor)

DREA Technical Communication 89/307

1 . DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

X Unlimited distribution
Distribution limited to defence departments and defence contractors; further distribution only as approved
Distribution limited to defence departments and Canalan defence contractors; further distribution only as approved

Distribution limited to government departments and agencies; further distribution only as approved
Distribution limited to defence departments; further distribution only as approved

Other (pleasai spiecfy):

12.. DOCUMENT ANNOUNCEMENT (any limitations to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where futher distribution (beyond the audienie speclfied In 11) is possible, a wider announcement
audience may be selected.)

Unlimited

UNCLASSIFIED

SECURIITY CLASSIFICATION OF FORM

DCD03 2/06/87

51

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

13 ABSTRACT (a brief and factual sumiary of the document ft may also ppea elsewhere in the body of the document itself It is highly
desirable that the abstract of classified documents be unclassified Each Pagraph of the abstract shell begin with an indication of the
security classification of the information in the IWagraph (unless the document itself is unclassified) represented as (S). IC), (R. or (U)
it is not necessiy to include here Abstralcts in both offical languages unless the text is bilingual).

An IBM PC has been set up to control an EG&G PARC M273
potentiostat to perform electrochemical corrosion experiments using
PARC'S M342 corrosion measurement software. Modifications to the
software permit the measurement of corrosion current over long periods
of time using the Polarization Resistance measurement t-chnique. A

computer program, PCCORROS, is used to analyze the polarization
resistance data to determine the polarization resistance, corrosion
current, anodic and cathodic tafel constants, and the corrosion
potential.

14 KEYWORDS. DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that cliraicterize a document and could be
helpful in cataloguing the document They should be selected So that no security classification is required identifiers. Such as equipmerw
model designation, trade name, military Project code name. geographic iocation may also be included If possible keywords should be selected
from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TESTJ and tran thesaurus-identified If it is not possible to
select indexing terms which are Unclassfied, the classification of each Should be indicated as with the title.)

polarization resistance

corrosion

electrochemical

computer program

IBM PC

UNCLAS SI FIED

SECURITY CLASSIFICATiON OF FORM

52

